

Im Teil 1:

Ganzrationale Funktione Gebrochen rationale Funk, one Exponentialfunktion

Zu fast jeder Fragestellung bzw. Lösung wird das Grundwissen erklärt. Ideal zum wiederholenden Erlernen der wichtigen Methoden der Analysis

t Nr. 71210

Stand 4. Juli 2014

FRIEDRICH W. BUCKEL

NTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK

www.mathe-cd.de

Vorwort

Dieser Text ist etwas ganz Besonderes. Er bespricht von wichtigen Funktionen abiturä in che Aufgaben mit so ausführlichen Lösungen, dass nebenbei in "Wissenskästen" das benäugte Hintergrundwissen besprochen wird.

Es handelt sich hier bewusst nur um 2 Anwendungsaufgaben. Denn hier soll der mathematische Hintergrund der Funktionsanalyse wiederholt werden. Dabei lernt man die wicht sten Methoden, die man dann bei Anwendungsaufgaben benötigt.

Um eine ganz breite Leserschicht anzusprechen liefere ich (fast) alle Lösunger schalt in **manueller Ausführung wie auch mit dem Einsatz von CAS-Rechnern** (TI Nspire und CASI) ClassPad). Deren Handhabung wird auch sehr ausführlich besprochen.

Ein Schüler, der sich hiermit optimal auf eine Analysis-Prüfung vorbereiten w.f., kann also genau die Methoden auswählen und trainieren, die seinen Anforderungen gerecht we den.

Wer mit CAS arbeiten darf, sollte dabei nicht vergessen, dass er die CAS Tgebnisse auf das Lösungsblatt übertragen muss, was er an Hand der gezeigten manuellen Lösung dann auch nachvollziehen kann. Er/Sie muss dann lediglich einige CAS-Befehre zusätzlich aufschreiben und dazu die Ansätze und die Ergebnisse.

Am Ende des Textes gibt es ein Stichwortregister, das anzeigt, man welche Methode findet!

Inhalt

Text 71010		Aufgabe	Lösung
Aufgabe 1	Ganzrationale Funktion 1	3	9
Aufgabe 2	Ganzrationale Funktion 2	3	15
Aufgabe 3	Gebrochen rationale Funktion 1	4	21
Aufgabe 4	Gebrochen rationale Συπκίοη 2	4	25
Aufgabe 5	Exponentialfunktion 1	5	31
Aufgabe 6	Exponentialfunktion 2	5	36
Aufgabe 7	Wachstune funktion 1	6	45
Aufgabe 8	Wachstums a ktion 2	7	48
Stichwortregi	ster		50

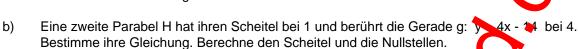
Text 71011

Aufgabe 9	Wuntelfunktion 1
Aufgabe 10	Wurzelfunktion 2
Aufgabe 11	Trigonometrische Funktion 1
Aufgabe 1.	Trigonometrische Funktion 2
Auf abe 13	Logarithmusfunktion 1
Aufgabe	Logarithmusfunktion 2
Aufgab 15	Zusammengesetzte Funktion
Aufgaze 16	Betragsfunktion

Aufgabe 1 - ganzrational

(Grundaufgaben zur Parabel)

a) Eine Parabel K geht durch A(1|-4), B(5|-4) und C(2|2). Bestimme ihre Gleichung. Berechne den Scheitel und die Nullstellen.



- Zeichne beide Parabeln.
 Berechne ihre Schnittpunkte und die Länge der gemeinsamen Sehne.
- d) In welchen Punkten haben K und H eine Tangente parallel zur gemeins men Sehne? Stelle die Gleichungen auf.
- e) Unter welchen Winkeln schneiden sich die Parabeln?
- f) Wie groß ist die von beiden Parabeln umschlossene Fläche?
- g) Jede zur y-Achse parallele Gerade mit der Gleichung x ausschreidet die beiden Parabeln. So entstehen zwischen den beiden Schnittpunkten der Parabeln vertikale Strecken unterschiedlicher Länge.

Gib die Länge der Strecke in Abhängigkeit von u an. Welche dieser Strecken hat die größte Länge und wie hang ist sie wirklich?

Aufgabe 2 - ganziational

Zu jedem $t \in \mathbb{R} \setminus \{0\}$ und für $x \in \mathbb{R}$ ist eine Funktion ingegeben durch

$$f_t(x) = \frac{1}{2}x^3 - tx^2 + \frac{1}{2}t^2x$$

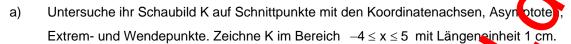
 K_t sei das Schaubild von f_t .

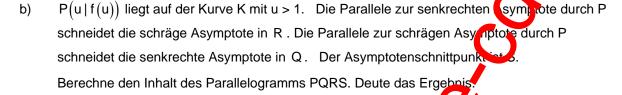
- a) Untersuche K_t auf gemeinsame Punkte mit **den** Koordinatenachsen, Hoch-, Tief- und Wendepunkte. Zeichne K_3 im Belluch $-1 \le x \le 4$ (Längeneinheit 1 cm)
- b) Welche Kurve C bilden die Wendepunkte W_t der Kurven K_t für alle zugelassenen Werte von t? Für welche Werte von t schleiden C und K_t einander in W_t senkrecht?
- c) Lege vom Punkt Q(0 -16) to Tangente an die Kurve K₃. Berechne ihren Berührpunkt. Hilfe: Er hat eine schzellige x-Koordinate.
- d) Eine Parabel 2. Ordnung Pt geht durch die gemeinsamen Punkte von Kt mit der x-Achse und berührt Kt im krispreng. Stelle deren Gleichung auf und weise nach, dass Kt und Pt keine weiteren geneinsamen Punkte haben.
- e) In welche Vernamis teilt K_t die von P_t und der x-Achse eingeschlossene Fläche?
- f) Welch Beziehung muss zwischen r und s ($r \neq s$) bestehen, damit sich die Kurven K_r und K_s im Ursprang berühren?

Ze ge: ZwerKurven K_r und K_s , die sich nicht im Ursprung berühren, schneiden sich in genauzwer unk en.

Aufgabe 3 - gebrochen rational

Gegeben ist die Funktion f durch $f(x) = \frac{1}{2} \cdot \frac{x^2 - 2x - 3}{x - 1}$





- c) Zeige, dass das Schaubild K punktsymmetrisch zum Punkt S(1)
- d) K begrenzt mit den Koordinatenachsen im 2. Feld ein Fläche stück. Berechne seinen Inhalt.
- e) Die Tangente in einem beliebigen Kurvenpunkt B(u | f(u)) m. u. 1 schneidet die Asymptoten in C und D. S sei deren Schnittpunkt.

 Für welche Lage des Punktes B nimmt das Dreieck DCS einen extremen Inhalt an?

Aufgabe 4 - gebrochen rational

Gegeben ist die Funktion f durch $f(x) = \frac{2}{(x-1)^2}$, ihr Schaubild sei K.

a) Bestimme den maximalen Definitionsbersten.

Untersuche K auf Symmetrie, gemeinsame Punkte mit der x-Achse, auf Hoch- und Tiefpunkte, Wendepunkte sowie Attantaten.

Zeichne K im Bereich $-3 \le x \le 3$ sant Asymptoten mit Längeneinheit 2 cm.

b) P(u|f(u)) sei ein Punkt auftrem Graphen von f für u > 0. Die Parallele zur y-Achse durch P schneidet die x-Achse in Q.
Berechne den Fläche him et des Dreiecks OPQ. Besitzt dieses für eine bestimmte Lage von P einen extremen Inhalt?

c) Im 1. Feld wird ein Breieck ABCD so eingezeichnet, dass C und D auf K liegen, A und B auf der x-Achse. Durch **Drehu ig dieses Rechtecks um die x-Achse** entsteht ein Zylinder.

Berechne die Voramen dieses Zylinders in Abhängigkeit von der Höhe h des Rechtecks.

Für welche Late von C und D erhält dieses Zylindervolumen ein Maximum?

d) Berechne General Stammfunktion F zu f, deren Graph durch den Punkt S(1|1) geht.

Ist be Finktion
$$g(x) = \begin{cases} f(x) & \text{für } x > 1 \\ F(x) & \text{für } x \le 1 \end{cases}$$

stellg und differenzierbar?

Berechne seine Größe.

Aufgabe 5 - Exponentialfunktion

Gegeben ist die Funktion f durch

$$f(x) = \frac{2}{3 \cdot e^x - 1}$$

a) Bestimme den Definitionsbereich, die Asymptoten und die Schnittpunkte mit den Koordinatenachsen.

Untersuche $\, f \,$ auf $\, \textbf{Monotonie} \,$ und gib die Wertmenge von $\, f \,$ an.

Zeichne das Schaubild K von f für $-4 \le x \le 3$ mit Längeneinheim cm.

- b) Begründe, warum f umkehrbar ist und gib die Gleichung der **Umkehrfunktion** g an. Welchen Definitionsbereich hat g?
- c) P(ulv) sei ein Punkt auf K im 1. Feld.
 Die Koordinatenachsen und ihre Parallelen durch P begrenzen ein Rechteck.
 Für welchen Wert von u ist der **Umfang des Rechtecks** in kleinsten?
- d) Zeige, dass die Kurve C mit der Gleichung $y = \frac{2e^x}{3 e^x}$ as **spiegelbild** von K an der y-Achse ist. Welche Gleichung hat die Kurve L, and durch Spiegelung von K an der Geraden y = -1 entsteht?

Aufgabe 6 - Expandialfunktion

Für jedes $t \in \mathbb{R}$ ist eine Funktion f_t gegeben durch

$$f_t(x) = (x+t) \cdot e^{-x}$$

Ihr Schaubild sei Kt.

- a) Untersuche K_t auf Schnittpunkte mit Ven Koordinatenachsen sowie Extrempunkte.
- b) Zeichne K₁ und K₂ in ein gert einsames Achsenkreuz (x-Achse von -3 bis 5, y-Achse von -4 bis 4, LE 1 cm.)
- c) Gib die Gleichung der Grtskare aller Hochpunkte an.
- d) Die Gerade x = u = it u > 0 schneidet K₁ in Q und K₂ in P.
 Für welchen Vert von i nimmt der Inhalt des Dreiecks OPQ einen extremen Inhalt an?
 Gib diesen extremen inhalt an und bestimme seine Art.
- e) K_1 , K_2 ut a lie Kvordinatenachsen begrenzen im 2. Feld eine Fläche A. Berechne ihren Inhalt. K_1 , K_2 , die y-Achse und die Gerade x=r mit r>0 begrenzen eine Fläche B(u). Berechte dyren Inhalt sowie ihren Grenzwert B* für $r\to\infty$.

Aufgabe 7 - Wachstumsfunktion

Ein zunächst leerer Wassertank einer Gärtnerei wird von Regenwasser gespeist. Nach Beginn eines Regens wird die momentane Zuflussrate des Wassers durch die Funktion r mit

$$r(t) = 10000 \cdot (e^{-0.5t} - e^{-t})$$
; $0 \le t \le 12$

beschrieben (t in Stunden seit Regenbeginn, r(t) in Liter pro Stunde).

- a) Bestimmen Sie die maximale momentane Zuflussrate.
 In welchem Zeitraum ist diese Zuflussrate größer als 2000 Liter pro Sturie
 Zu welchem Zeitpunkt nimmt die momentane Zuflussrate am stärkstervab? (4 VP)
- b) Wie viel Wasser befindet sich drei Stunden nach Regenbeginn im Tank?

 Zu welchem Zeitpunkt sind 5000 Liter im Tank? (4 VP)
- c) Zur Bewässerung von Gewächshäusern wird nach 3 Stunde begonnen, Wasser aus dem Tank zu entnehmen. Daher wird die momentane Änderungsrate as Wasservolumens im Tank ab diesem Zeitpunkt durch die Funktion w mit

$$w(t) = r(t) - 400$$
 ; $3 \le t - 12$

beschrieben (t in Stunden seit Regenbeginn, w(t) Liter pro Stunde).

Wie viel Wasser wird in den ersten 12 Stunden nach Regenbeginn entnommen?

Ab welchem Zeitpunkt nimmt die Wassermense im Tank ab?

Bestimmen Sie die maximale Wassermen ein Tank.

Aufgabe 8 - Wachstumsfunktion

3.1 Die Höhe h(t) eines Baumes zum Zeitpunkt t wird näherungsweise beschrieben durch

$$h(t) = \frac{35}{160 \cdot e^{-0.07632 \cdot t} + 1} \quad \text{mit} \quad t \ge 0$$

Dabei ist t die Zeit in Jahren seit Pflanzung des Baums im Frühling 1930, h(t) ist in m angegeben.

- 3.1.1 Berechnen Sie das Jahr, in dem der Baum am schnellsten gewachsen st. Wann war der Baum zu 75 % ausgewachsen?
- 3.1.2 Bestimmen Sie das durchschnittliche Jahreswachstum des Baun der betreten zehn Jahre.
- 3.2 Im Jahr 2013 wird der Durchmesser d(x) des Baumstamms is der Hehe x über dem Boden modelliert durch die Funktion d mit

$$d(x) = -3,003 \cdot 10^{-9} x^3 + 9,000 \cdot 10^{-6} \cdot x^2 - 6^{6} \angle 10^{-2} x + 39,73$$

d(x) und x sind in cm angegeben.

In diesem Jahr wird der Baum gefällt. Der Schnitt vird in einer Höhe von 30 cm über dem Boden angesetzt.

- 3.2.1 Berechnen Sie den Durchmesser der Schnitt auf Bestimmen Sie die Länge des abgeschnittenen Stamms, die sich aus diesem Modell ergibt.
- 3.2.2 Ermitteln Sie das Volumen des Stamms Rubikmeter.

Kurz vor der Fällung wurde der Durcht esser des Baumstamms in der Schnitthöhe auf 40 cm und die Länge des Stamms auf 20 n. geschätzt. Das Volumen des Stamms wurde damit schon vorab geschätzt, wobei die Form des Stamms vereinfachend als Kreiskegel angenommen wurde.

Berechnen Sie die prozentuale Abweichung des geschätzten Volumens vom oben ermittelten Volumen.

8

Lösung Aufgabe 1

- Eine Parabel K geht durch A(1|-4), B(5|-4) und C(2|2). a) Bestimme ihre Gleichung. Berechne den Scheitel und die Nullstellen.
- WISSEN: Man ordnet der Parabel eine Funktion p zu, die man so ansetzt: p(x) = axSie muss diese Bedingungen erfüllen: p(1) = -4, p(5) = -4 und p(5) = -4Diese führen zu einem Gleichungssystem für die Unbekannten a, b

Manuelle Lösung

Bedingungen:

$$A(1|-4) \in K$$

d. h.

$$p(1) = -4$$

p(2) = 2

d.h.

$$-b$$
 $c = -4$ (1)

$$B(5 \mid -4) \in K$$
$$C(2 \mid 2) \in K$$

$$p(5) = -4$$

$$4a + 2b + c = 2$$

5a + 5b + c = -4

Elimination von c:

$$(2) - (1)$$
:

$$24a + 4b = 0$$

$$(3) - (1)$$
:

$$3a+b=6$$

Elimination von b:

$$(4) - 4 \cdot (5)$$

$$12a = -24 \implies a = -2$$

$$-6 + b = 6 \implies b = 12$$

$$10 + c = -4 \implies \boxed{c = -14}$$

 $p(x) = -2x^2 + 12x -$ Ergebnis:

CAS-Lösungen:

CASIO verlangt zur Lösung eines Gleichungssystems nicht den

TI Nspire

Define $p(x)=a \cdot x^2+b$ =-2 and b=12 and c=-14 p(x)|a=-2 and b=12 and c=-2·x²+12·x-14 x²+12·x-14 Fertig $-2 \cdot x^2 + 12 \cdot x - 14$

Wichtig:

Befehl "Solve"!

Wenn die Lösungen

erscheinen, ist die Parabelf n ktion. ch nicht exakt definiert.

Dies macht man, indem man sich den Parabelterm durch Einsetzen (mit dem Bedinnungsstrich |) anzeigen lässt und dann in eine neue Definition bernimmt.

CASIO ClassPad

Define $p(x)=a*x^2+b*x+c$
done
[p(1)=-4]
$ \begin{cases} p(1) = -4 \\ p(5) = -4 \\ p(2) = 2 \end{cases} $ a, b, c
$ p(2)=2 _{a,b,c}$
{a=-2, b=12, c=-14}
a*x ² +b*x+c Ans
-2·x ² +12·x-14
Define $p(x) = -2 \cdot x^2 + 12 \cdot x - 14$
done

- b) Eine zwe'te Parabel H hat ihren Scheitel bei 1 und berührt die Gerade g: y = 4x - 14 Besumme ihre Gleichung. Berechne den Scheitel und die Nullstellen.
- WISSEN! tzt lautet die erste Bedingung: H hat bei 1 eine waagrechte Tangente. e Parabelfunktion h heißt das: h'(1) = 0.
 - (eil H die Gerade g bei $x_B = 4$ berührt, hat sie dort dieselbe x-Koordinate, also $y_B = 2$, nd auch dieselbe Steigung, d.h. $f'(4) = m_a = 4$

Manuelle Lösung

Ansatz: $h(x) = rx^2 + sx + t$

h'(x) = 2rx + s

(Man sollte nicht wieder a, b, c ver ver d

Bedingungen: h'(1) = 0

d.h.

2r + s = 0

(1)

h(4) = 2h'(4) = 4 d.h.

16r + 4s + t = 2

(2)

d.h.

8r + s = 4

(3)

Elimination von b:

(3) - (1):

$$6r = 4 \implies r = \frac{2}{3}$$

Aus (1) folgt:

$$s = -2r \implies s = -\frac{4}{3}$$

Aus (2) folgt:

$$\frac{32}{3} - \frac{16}{3} + t = 2 \implies t = 2$$

Ergebnis:

$$h(x) = \frac{2}{3}x^2 - \frac{4}{3}x - \frac{10}{3}$$

CAS-Lösungen:

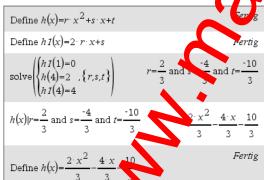
TI Nspire

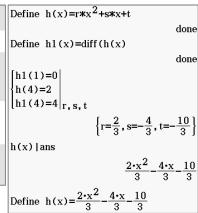
CASIO ClassPad

Die Ableitungsfunktion kann man berechnen lassen (CASIO) oder selbst eingeben (Nspire).

Ab der 4. Zeile wird h neu definiert. Dazu lässt man zuerst die Werte von r, s und t einsetzen.

Dazu schreibe man h(x) | ans als Befehl auf. Das habe ich auch bei Nspire getan, nur dort wurde ans sofort ersetzt.





Bestimmung von Nullstellen

Manuelle Lösung:

WISSEN:

Nullstellen sin die x-roordinaten der Schnittpunkte der Parabel mit der x-Achse. Dort sind alle y-Koord paten Null. Die Bedingung lautet daher h(x) = 0.

Diese führt ihr aus me quadratische Gleichung, die man mit der sogenannten Mitternachtsformel lösen sollte (ich rate dringend von der sicher in vielen Fällen

gen pg-Formel ab):

$$ax^{2} + bx + c = 0 \implies x_{1,2} = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

$$h(x) = 0$$
 $\frac{2}{3}x^2 - \frac{4}{3}x - \frac{10}{3} = 0$ $|: \frac{2}{3} d. h. | \cdot \frac{3}{2}$

ergibt
$$x^2 - 2x - 5 = 0$$

$$\frac{2 + \sqrt{4 - 4 \cdot 1 \cdot \left(-5\right)}}{2 \cdot 1} = \frac{2 \pm \sqrt{24}}{2} = \frac{2 \pm \sqrt{4 \cdot 6}}{2} = \frac{2 \pm 2\sqrt{6}}{2} = 1 \pm \sqrt{6} \approx \begin{cases} 3,45 \\ -1,45 \end{cases}$$

$$N_1 \left(1 - \sqrt{6} \mid 0\right) \approx \left(-1,45 \mid 0\right), \ N_2 \left(1 + \sqrt{6} \mid 0\right) \approx \left(3,45 \mid 0\right)$$

ngen:

solve
$$(h(x)=0,x)$$
 $x=-(\sqrt{6}-1)$ or $x=\sqrt{6}+1$
solve $(h(x)=0,x)$ $x=-1.44949$ or $x=3.44949$

Solve(h(x)=0, x)
$$\{x=-\sqrt{6}+1, x=\sqrt{6}+1\}$$
 Solve(h(x)=0, x)
$$\{x=-1.44949, x=3.44949\}$$

www.mathe-cd.de

Friedrich Buckel

Bestimmung des Scheitels

WISSEN:

Hierzu gibt es verschiedene Lösungen.

- 1. Kennt man die Nullstellen der Parabel, dann ist die <u>Scheitelstelle</u> ger su die Mitte: Wenn z. B. -1 und 5 die Nullstellen sind, dann ist die Scheitelstelle: $x_0 = \frac{1+5}{2} = 2$ In vorliegendem Falle ist es noch einfacher, wenn man die Nun tellen exakt berechnet: $x_N = \frac{2 \pm 2\sqrt{6}}{2} = 1 \pm \sqrt{6}$. Dann sieht man, dass six syr imetrisch zu x = 1 liegen, nämlich um $\sqrt{6}$ links. bzw. rechts davon. Also ist die Symmetrieachse die Gerade x = 1, und darauf liegt der Scheitel
- 2. Im Scheitel hat die Parabel eine <u>waagerechte Tangeve</u>, aso muss die Ableitung dort den Wert 0 haben. Aus der Bedingung hussel folgt die Scheitelstelle.
- 3. Weil die allgemeine Parabel $f(x) = ax^2 + bx + b$ die Ableitung f'(x) = 2ax + b hat, bedeutet f'(x) = 0 2ax + b = 0, woraus of ax = b folgt.

 Dies erkennt man aber auch aus der Mich machtsformel (wie in 1. beschrieben).

Manuelle Lösung:

'Für die Nullstellen wurde berechnet $x_N = \frac{2 \pm 2\sqrt{6}}{1 \pm \sqrt{6}}$, also liegt der Scheitel auf der

Parabelachse x = 1.
$$h(1) = \frac{2}{3} - \frac{4}{3} - \frac{10}{3} = -\frac{12}{3}$$

Solve(h1(x)=0,x) (x=1) h(1)

Ergebnis: S(1|-4)

CAS-Lösung:

c) Zeichne beide Parabeln.

Berechne ihre Schnittpunkte A und Bund die Länge der gemeinsamen Sehne.

Manuelle Lösung:

Schnittpunkte der Parabeln:

- 1. Parabel: p(x) -2x²+12x -14
- 2. Parabel: $h(x) = \frac{2}{3}x^2 \frac{4}{3}x \frac{10}{3}$

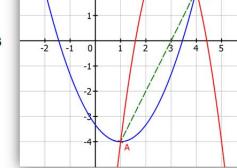
Schnittgleichung $\frac{2}{3}x^2 - \frac{4}{3}x - \frac{10}{3} = -2x^2 + 12x - 14$ | $\cdot 3$

$$2x^2 - 4x - 10 = -6x^2 + 36x - 42$$

$$8x^2 - 40x + 32 = 0$$
 |: 8

$$x^2 - 5x + 4 = 0$$

$$x_{1,2} = \frac{5 \pm \sqrt{25 - 16}}{2} = \frac{5 \pm 3}{2} = \begin{cases} 4\\1 \end{cases}$$



dina.en:

$$p(4) = -32 + 48 - 14 = 2$$
 und $p(1) = -2 + 12 - 14 = -4$

rgebn s:

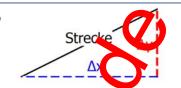
Die Schnittpunkte sind A(1|-4) und B(4|2).

Länge der Sehne

WISSEN:

Die Länge einer schrägen Strecke berechnet man mit dem Satz des Pythagoras:

$$L = \sqrt{\Delta x^2 + \Delta y^2}$$



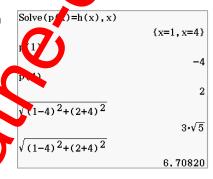
Die Schnittpunkte sind A(1|-4) und B(4|2).

$$L = \sqrt{\left(4 - 1\right)^2 + \left(2 + 4\right)^2} = \sqrt{9 + 36} = \sqrt{45} \approx 6.71 \text{ (LE)}$$

CAS-Lösung:

Hier reicht der Screenshot eines der beiden Geräte.

Wenn man beide Parabeln durch Funktionen definiert hat, kann man zur Schnittpunktsberechnung deren Terme gleichsetzen.



d) In welchen Punkten haben K und H eine Tangent parallel zur gemeinsamen Sehne? Stelle die Gleichungen auf.

WISSEN:

Parallele Geraden haben dieselbe st. Lung. Diese berechnet man hier aus den Koordinaten der Schnittpunkte: $\alpha = \frac{\Delta y}{\Delta x}$ (s. oben)

Damit die Tangente dieselbe seiging erhält, muss man die Berührstellen suchen, für die gilt p'(x) = m by h'(x) = m

Manuelle Lösung:

$$m = \frac{\Delta y}{\Delta x} = \frac{2 - (-4)}{4 - 1} = \frac{6}{3} = 2$$
 (Dies kann man auch an der Zeichnung erkennen)

Parabel K:

$$\Delta x$$
 4-1 33
 $p(x) = -2x^2 + 12x - 4$ $p'(x) = -4x + 12$

Bed.: $p'(x) = 2 + 4x + 12 = 2 \Leftrightarrow -4x = -10 \Leftrightarrow x_1 = 2,5$

 $y_1 = p(\frac{5}{2}) = -2 \cdot \frac{2}{4} \cdot 12 \cdot \frac{5}{2} - 14 = -12,5 + 30 - 14 = 3,5$

Der Perührp nkt ist also: $P_1(2,5 | 3,5)$

Tang intengle chung mit der Punkt-Steigungsform aufstellen: $y - y_1 = m \cdot (x - x_1)$

 $y = 2 \cdot (x - 2.5)$ ergibt y = 2x - 1.5

Parabel H:

$$h'(x) = \frac{4}{3}x - \frac{10}{3}$$
 $h'(x) = \frac{4}{3}x - \frac{4}{3}$

Bed.. $h'(x) = 2 \iff \frac{4}{3}x - \frac{4}{3} = 2 \iff \frac{4}{3}x = \frac{10}{3} \iff x_2 = 2,5$

 $y_2 = h(\frac{5}{2}) = \frac{2}{3} \cdot \frac{25}{4} - \frac{4}{3} \cdot \frac{5}{2} - \frac{10}{3} = \frac{25 - 20 - 20}{6} = -\frac{15}{6} = -\frac{5}{2} = -2,5$

Ser Berührpunkt ist also: $P_2(2,5 | -2,5)$

Tangentengleichung: $y + 2.5 = 2 \cdot (x - 2.5)$ ergibt y = 2x - 7.5

Friedrich Buckel

CAS-Lösung:

Nach der Definition der

Ableitungsfunktionen

sucht man die Parabelstelle, in der die Tangentensteigung 2 ist und zwar an K

und dann an H.

Die Tangente wird so erstellt:

$$y = m(x - x_1) + y_1$$

Bei CASIO vereinfacht man sofort mit Expand.

TI Nspire

CASIO ClassPad

Define $pI(x) = \frac{d}{dx}(p(x))$	Fertig	Define p1(x)=diff(p(x)	done
Define $hI(x) = \frac{d}{dx}(h(x))$	Fertig	Define $h1(x)=diff(x, x)$ Solve($p1(x)=2, x$)	done
solve(p1(x)=2,x)	$x=\frac{5}{2}$	p(2.5)	$\left\{x=\frac{5}{2}\right\}$
$p\left(\frac{5}{2}\right)$	$\frac{7}{2}$	expand(=2*(x 2.5)+3.5)	$\frac{7}{2}$
$y=2\cdot (x-2.5)+3.5$	<i>y</i> =2· <i>x</i> −1.5		$y=2\cdot x-\frac{3}{2}$
solve(hI(x)=2,x)	$x=\frac{5}{2}$	Solve $(h_{\mathbf{x}}(\mathbf{x})=2,\mathbf{x})$	$\left\{x=\frac{5}{2}\right\}$
$h\left(\frac{5}{2}\right)$	<u>-5</u>	ht. Ex	$-\frac{5}{2}$
$y=2\cdot (x-2.5)-2.5$	y=2 × − 9. 5	pand(y=2*(x-2.5)-2.5)	$v=2\cdot y-\frac{15}{2}$

Schaubild mit Tangenten (MatheGrafix):

e) Unter welchen Winkeln schneiden sich die Parabe

WISSEN:

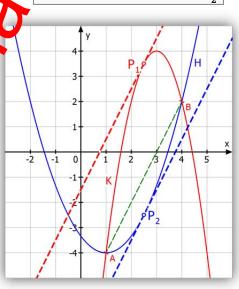
Der Schnittwinkel zweier Geraden folgt aus:

$$\tan \gamma = \frac{m_1 - m_2}{1 + m_1 \cdot m_2}$$
 Der Betrag so vi de für

dass der kleinere Winkel berechnet wird.

Wird der Nenner Null, sind die Geraden

orthogonal: $m_1 \cdot m_2 = -1$ bz $m_2 =$



Manuelle Lösung:

Die Tangentensteigungen werden berchnet mittels p'(x) = -4x + 12 und h'(x) = $\frac{4}{3}x - \frac{4}{3}$

$$p'(1) = -4 + 12 = 8$$
 $h'(1) = \frac{4}{3} - \frac{4}{3} = 0$

$$h'(1) = \frac{4}{3} - \frac{4}{3} = 0$$

$$\tan \alpha_1 = \left| \frac{8-0}{1+8\cdot 0} \right| = 8 \implies \alpha_1 = \tan^{-1}(8) \approx 82.9^{\circ}$$

(2. Schnittwinkel:
$$\alpha_2 \approx 180^{\circ} - 82,9^{\circ} = 97,1^{\circ}$$
)

$$p'(4) = -16 + 12 = -4$$
 $h'(4) = \frac{16}{3} - \frac{4}{3} = \frac{12}{3} = 4$

$$\tan \beta_1 = \left| \frac{4+4}{1-16} \right| = \frac{8}{15} \implies \beta_1 = \tan^{-1} \left(\frac{8}{15} \right) \approx 28,1^{\circ}$$

(2. Schnittwinkel:
$$\beta_2 = 180^{\circ} - \beta_1 \approx 151,9^{\circ}$$
)

CAS-Lösu

CASIO ClassPad

Hier ward man alles in die Formel hineinschreiben. pire gibt es keinen Unterschied.

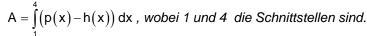
$$\tan^{-1}(abs(\frac{p1(1)-h1(1)}{1+p1(1)*h1(1)}$$
82.87498
$$\tan^{-1}(abs(\frac{p1(4)-h1(4)}{1+p1(4)*h1(4)}$$
28.07249

Friedrich Buckel

f) Wie groß ist die von beiden Parabeln umschlossene Fläche?

WISSEN:

Für die umschlossene Fläche ist K die obere Kurve (Schaubild von p) und H die untere Kurve (Schaubild von h). Dann rechnet man:



Manuelle Lösung:

$$A = \int_{1}^{4} \left(\left(-2x^2 + 12x - 14 \right) - \left(\frac{2}{3}x^2 - \frac{4}{3}x - \frac{10}{3} \right) \right) dx = \int_{1}^{4} \left(-\frac{8}{3}x^2 + \frac{40}{3}x - \frac{32}{3} \right) dx$$

$$A = \left[-\frac{8}{3} \cdot \frac{1}{3}x^3 + \frac{40}{3} \cdot \frac{1}{2}x^2 - \frac{32}{3}x \right]_{1}^{4}$$

In der eckigen Klammer steht die Stammfunktion F(x). Mal (rech) et jetzt: F(4) - F(1)

$$A = \left[-\tfrac{8}{9} \cdot 64 + \tfrac{20}{3} \cdot 16 - \tfrac{32}{3} \cdot 4 \right] - \left[-\tfrac{8}{9} + \tfrac{20}{3} - \tfrac{32}{3} \right]$$

Taschenrechner-Ergebnis: A = 12 (FE)

CAS-Lösung:

TI Nspire:

Mit einem CAS-Rechner ist das kein Aufwand.

Gib die Länge der Strecke in Abhängigkeit vor van. Welche dieser Strecken hat die größte Länge und wie lang ist sie wirklich?

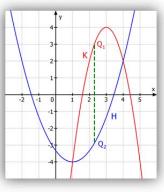
WISSEN:

Diese Extremwertaufgabe vertaus Die Aufstellung der Zielfunktion "Länge" L(u) mit Definitionsbereich $\mathbf{D}_u = [\ 1; 4\]$.

Die Länge einer vertikalen Str. cke ist $L(u) = y_{oben} - y_{unten}$

Dann folgt die Notwendige Bedingung: L'(u) = 0.

Für die Lösung u_E much die hinreichende Bedingung $L''(u_E) < 0$ sein. Die maximale Länge ist dann ein absolutes Maximum, weil die Randwerte 0 sin v.



12

Manuelle Lösung:

Parabel K: p(x) = -2x + 2x - 14

 $Q_1(u|p(u)) \in K$

Parabel H: $h(x) = \frac{4}{3}x^2 - \frac{4}{3}x$

 $Q_2(u | h(u)) \in H$

Zielfunktion (Länge ve. Strecke Q₁Q₂:

dirgung: L'(u) = 0

L(u) = p(u) - h(u)

mit $\mathbf{D}_{u} = [1; 4]$

 $L\left(u\right) = -2u^2 + 12u - 14 - \left(\frac{2}{3}u^2 - \frac{4}{3}u - \frac{10}{3}\right) = -\frac{8}{3}u^2 + \frac{40}{3}u - \frac{32}{3}u^2 + \frac{40}{3}u - \frac{32}{3}u - \frac{40}{3}u - \frac$

 $L'(u) = -\frac{16}{3}u + \frac{40}{3}$, $L''(u) = -\frac{16}{3}$

 $-\frac{16}{3}u + \frac{40}{3} = 0$ \Leftrightarrow 16u = 40 \Leftrightarrow $u = \frac{40}{16} = \frac{5}{2} = 2,5$

Hinreichende Bedingung:

 $L''(2,5) < 0 \Rightarrow Maximum.$

Maxima or Wort

 $L\left(\frac{5}{2}\right) = -\frac{8}{3} \cdot \frac{25}{4} + \frac{40}{3} \cdot \frac{5}{2} - \frac{32}{3} = -\frac{50}{3} + \frac{100}{3} - \frac{32}{3} = \frac{18}{3} = 6$ (LE)

Randwerte:

Ableitunger

Notwendige b

L(1) = L(4) = 0, also liegt ein absolutes Maximum vor.

Friedrich Buckel

www.mathe-cd.de

Stichwortverzeichnis

Ableitung	Gebrochen rational	zweier Gerade 13
Kettenregel 32	Nullstellen, Polstellen 21	Schräge Asymptote 2
Produktregel 38	Gleichungen	Spiegelung
Quotientenregel 25, 27	quadratische 10	an der y-Achse 35
Änderungsrate 45	Hinreichende Bedingung 38	an y = > 25
Asymptote	Integration	Stammf nktion 29
schräge 21	mit Substitution 23, 29	Stetigkeit
Asymptoten	partiell integrieren 43	u tersuchen 29
bei Exponentialfunktionen 31	Kegelvolumen 49	Strelle
gebrochen rational 25	Krümmung 38	Länge perechnen 12
schräge bei gebr. rat. Fkt. 21	Kurvendiskussion	rtikal 14
Begriffe trennen	ganz rational 15	S eckenlänge
Funktion - Schaubild 25, 31	gebrochen rational 21, 25	schräg 12
Berühren von Kurven 20	Länge einer Strecke 12	vertikal 14
CASIO ClassPad	Listenberechnung	Substitution
Ableiten mit diff 39	mit CAS 26	bei Integration 23, 29
CASIO-ClassPad	Monotonie 32	Symmetrie
Ableiten mit diff 16	bei nicht stetiger Funktion 32	Untersuchung bei Kurven 25
Definitionsbereich	Notwendige Bedingung 38	Tangente
gebrochen rational 25	Nullprodukt 36	parallel zu einer Geraden 12
Differenzierbarkeit	Ortskurve	von Q an Kurve legen 18
untersuchen 30	Methoden 17, 40	Tangentendreieck 24
Dreiecksinhalt	Parabel	Tangentenfunktion
monton wachsend 27	Gleichung aufstellen 3 19	mit CAS erstellen 24
Exponentialfunktionen	Nullstellen bereçhnen 11	Umkehrbarkeit
Asymptoten 36	Scheitel berechne 11	einer Funktion 33
Grundlagen 36	Parallelogramm	Umkehrfunktion
mit Brüchen 31	an Kurve 22	einer e-Funktion 33
Exponentialgleichung	Partielle Integration 3	Volumenfunktion
quadratisch 34	Quadratische Grichung 28	Stammfunktion der
Extrempunkte 38	Exponen Signe hung 34	Änderungsrate 46
Extremwertaufgabe	Lösung forugi 10	Wachstumsrate
Dreiecksinhalt 27, 41	mit Parameter 15	Höhenfunktion ableiten 48
Maximale Streckenlänge 14	Quote legel 25, 27	Wendepunkt 15
Rechtecksumfang 34	Regel van de l'Hospital 42	stärkste Wachstumsrate 48
Fläche	Rotation	zeroes
zwischen 2 Kurven 14, 44	eines Rechtecks 28	Nullstellenbefehl bei Nspire 33
Funktion	Rotationskörper 49	Zuflussmenge
Exponentialfunktion 31, 36	Sc. ittpunkt	aus Zuflussrate berechnen 46
ganz rational 15	mit der x-Achse 36	Zuflussrate 46
gebrochen rational 21, 25	mit der y-Achse 36	Zylindervolumen 28
zusammengesetzte 29	Schnittwinkel	